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Abstract 
 
 
 
 

This study estimates three distinct measures of truck-related accident risk for 
several California urban highways, based on a monthly panel of accident and 
traffic data spanning from January 2007 through April 2010.  The first of these 
risk measures is average risk, defined as the number of accidents divided by total 
traffic volume.  The second is marginal risk, defined as the change in average risk 
resulting from a marginal increase in truck traffic volume.  The third is external 
risk, defined as the product of marginal risk and total traffic volume. 
 
Special attention is paid to comparisons of these risk measures between "drayage 
routes", which carry the highest concentrations of drayage traffic, and other urban 
routes.  This is done to investigate the notion that drayage trucks present a greater 
threat to highway safety than do other types of heavy commercial trucks. 
 
Estimation results suggest that drayage routes are indeed relatively hazardous in 
terms of average risk.  The marginal and external risks exhibited by these routes, 
however, are considerably smaller than those of several other  urban routes.  
These latter findings suggest that the exclusive targeting of drayage routes, and 
the trucks that travel them, may not offer the most effective approach to designing 
highway safety policies that target heavy commercial truck traffic. 
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1. Introduction 

 
 About 87% of the truck drivers who haul ocean containers to and from the San Pedro Bay 
ports are independent owner operators known as "dray drivers".1  And traffic accidents are 
perceived to be all too frequent on highways carrying the heaviest concentrations of drayage 
trucks, namely Interstates 110 and 710.  Accordingly, there is a general impression that dray 
drivers are inherently more "dangerous" than other operators of heavy commercial trucks. 
 
 Indeed, a Los Angeles Times article entitled "Unsafe Trucks Stream Out of L.A.’s Ports" 
suggests that dray drivers tend to "cut corners whenever possible" when it comes to safely 
maintaining their trucks.2  It describes practices such as covering cracks in their truck chassis 
with mud, cutting treads in bald tires with electric knives, and evading California Highway Patrol 
safety checkpoints when alerted by fellow drivers.  Some argue that a combination of low wages 
and fierce competition among the roughly 16,000 dray drivers serving the ports leave them with 
"no choice" but to relax their safety standards.  These drivers, who are paid by the load and 
seldom compensated for traffic delays and waiting times, earn an average wage of $8.90 per hour 
even before considering truck maintenance expenditures.3    As a spokesman for the Owner-
Operator Independent Drivers Association puts it, "If you want good, clean, and safe equipment, 
the costs for it have to be reflected in the rates that truckers receive for moving the products".4 
  
 One might argue, however, that drayage traffic is no more a threat to highway safety than 
traffic generated by other sectors of the motor carrier industry, noting that the motor carrier 
industry in general is highly competitive.5  Although dray drivers might be able to cut costs by 
postponing safety measures or improve the number of containers they haul by driving more 
dangerously, doing so increases their chances of incurring accident costs.  So it is not entirely 
clear that dray drivers have any particular incentive to "cut corners" when it comes to truck 
safety.  And, as such, an empirical analysis is needed to determine if the presumed corner-cutting 
behavior of dray drivers makes the highways they travel especially dangerous. 
 
 In this study we undertake such an analysis by comparing accident risk levels among 
several California urban highways with varying truck volumes, paying particular attention to 

                                                 
1 "Drayage" refers to the hauling of ocean containers to and from sea ports by truck.  Those who do so with their 
independently owned and operated trucks are referred to as "dray drivers". 
2 Sahagun (2008). 
3 Monaco and Grobar (2005 – METRANS AR04-01). 
4 The notion that higher pay corresponds to safer equipment and behavior is not limited to drayage at the ports.  For 
instance, the truckload (TL) sector of the motor carrier industry has been characterized as “sweatshops on wheels”, 
where hourly pay is substantially lower than for similarly-skilled manufacturing jobs (Belzer, 2002).  There is some 
evidence that higher pay in this sector is correlated with lower accident rates (Rodriguez et al., 2003), but it is 
difficult to empirically distinguish the simultaneous effects of increased pay and safety initiatives implemented at 
the trucking firms studied. 
5 Belzer (2002). 
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Interstates 110 and 710, which are the most heavily traveled by dray drivers.  And we develop 
three measures of truck-related risk to perform these comparisons.  The first is "average risk", 
defined as the number of accidents per unit of traffic volume (i.e. the number of accidents 
averaged by traffic volume).  This is a fairly standard measure of risk, which provides an 
empirical probability of an accident occurring on a given route.  Our second risk measure is 
"marginal risk", defined as the change in average risk due to a marginal increase in truck traffic 
volume.  This is somewhat economic measure of risk because it identifies, at the margin, the 
routes on which an entering truck would generate the greatest increase in the risk of an accident 
for each vehicle already travelling that route.  It is especially useful for policy analysis because it 
identifies the routes for which reductions in truck traffic would provide the greatest risk-
reduction benefits.  Our third risk measure is "external risk", which calculates the cumulative 
change in risk across all vehicles travelling a given route due to marginal increase in truck 
volume; it is essentially the marginal risk for that route, multiplied by its total traffic volume.  
This measure is particularly useful for economists concerned with the accident externalities 
generated by heavy commercial trucks, and can guide road-pricing policies that target these 
trucks.6 
 
 Based on a panel of 57 California highways, or 114 routes when treating each highway's 
travel direction as a distinct route, spanning from January 2007 to April 2010, we find that 
drayage routes are relatively hazardous in terms of average risk, but not as much so in terms of 
marginal and external risk.  For example, the northbound and southbound directions of Interstate 
110 exhibit the 2nd and 3rd highest risk levels among the routes in our sample, with an average 
risk of about three accidents per million vehicle-miles.  The average risks for the northbound and 
southbound directions of Interstate 710 are 2.1 and 1.8 accidents per million vehicle-mile, 
respectively, ranking them 11th and 21st among the 114 routes considered.  When ranking these 
routes by marginal risk, however, the two directions of Interstate 110 are 30th and 32nd, and 
those of Interstate 710 are 36th and 47th.  In other words, there are several other routes on which 
additional trucks would generate considerably greater increases in accident risk.  For example, a 
one-percent increase in truck volume on northbound Interstate 405 would increase the risk of an 
accident by 0.47%, compared to a corresponding increase of 0.18% on northbound Interstate 
710.  Finally, trucks travelling on Interstate 110 generate the 11th and 13th highest risk 
externalities among the routes in our sample, and Interstate 710 ranks 25th and 38th.  So it 
appears, for example, that road-pricing policies that target heavy commercial trucks might 
consider the drayage routes as relatively high priorities, noting however that trucks on other 
urban routes such as southbound Interstate 405 and on both directions of State Route 17 generate 
even greater risk externalities. 
 

                                                 
6 See Steimetz (2008 – METRANS 06-07) for an example of a road-pricing framework designed to manage truck 
volumes on highways surrounding the San Pedro Bay port complex. 
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 Overall, our findings lend a degree of credence to the notion that drayage routes are 
relatively hazardous, based on their average-risk rankings, providing indirect evidence that dray-
drivers might indeed contribute to relatively high accident risks on the routes they travel most.  
Our findings also suggest, however, that safety policies which exclusively target their routes may 
not be warranted because, at the margin, greater risk reductions could be achieved by altering 
truck flows on several other routes.  One particular policy that could alter truck flows, at least 
during certain travel periods, is to levy tolls on heavy commercial trucks based on the external 
risks they generate.  Under such a policy, we find that such tolls would be higher-than-average 
for trucks on Interstate 110, but lower-than-average for trucks on Interstate 710.   
 
 More generally, our findings can be used to guide highway-safety policies irrespective of 
the drayage traffic carried by those highways.  By providing three distinct measure of truck-
related accident risk for each route in our sample, policymakers can determine which of these 
routes deserves the greatest attention based on their distinct policy objectives. 
 
 The remainder of this study proceeds as follows.  Section 2 describes and formally 
derives the three risk measures that we estimate for each route in our sample.  Section 3 
describes our empirical framework, including our data and estimation methods, and briefly 
discusses our fixed-effects panel regression results.  Section 4 reports and discusses our estimates 
for average risk, marginal risk, and external risk, and discusses the policy implications of our 
findings.  Section 5 offers concluding remarks, including limitations of our analysis and 
suggestions for further research. 
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2. Accident Risk Analysis 
 
 
2.1 Overview of Accident Risk Analysis 
 
 We assess the relative "danger" imposed by heavy commercial trucks on a given route, 
drayage or otherwise, primarily by answering two key questions.  The first asks "what is the 
probability of colliding with another vehicle on that route, given the volume of trucks that travel 
it?"  We answer this empirically by calculating the number of accidents per month on that route, 
divided by the number of vehicle-miles it carries.7  This is a fairly standard measure of accident 
risk, which we refer to as "average risk".8 
 
 The second question asks "how is the risk of an accident on a given route affected by 
increased truck traffic?"  We answer this by estimating the change in average risk that results 
from a marginal increase in truck volume.  This risk measure helps to identify routes where 
increased truck volumes are likely have the biggest impact on highway safety and, likewise, 
where safety policies designed to alter truck volumes might be the most effective. It also helps to 
characterize the external accident risk imposed by trucks (discussed below), which can guide 
road-pricing and related policies that target the accident externalities imposed by heavy 
commercial trucks. 
 
 Between average risk and marginal risk, which is the more "appropriate" measure of how 
"dangerous" each route is?  That depends on their application.  For instance, we might say that 
the route with the highest average risk is the most "dangerous" with regard to truck traffic.  At 
the same time, however, we might say that the route with the highest marginal risk carries the 
most "dangerous" trucks because additional trucks generate the greatest increase in average risk.  
And from a policy standpoint we might care more about using marginal risk to identify routes 
with the greatest opportunities to reduce such danger.  We provide both risk measures in the 
following analysis and let readers decide which is better suited to their particular application. 
 

We proceed by formally defining the risk measures discussed above.  In doing so we 
demonstrate explicitly how average and marginal risk are related, and how marginal risk gives 
rise to external risk — a metric that transportation economists pay particular attention to.  
Readers who are not interested in these technical details should focus instead on the risk 
definitions given in equations (2), (4), and (6). 
                                                 
7 “Vehicle-miles” is a standard unit of traffic “volume” or “flow”.  It is defined here as the number of vehicles 
travelling a given route per month, multiplied by the number of miles traveled. 
8 Alternatively, we could have defined average risk as the number of accidents per truck-mile to calculate the 
probability of colliding with a truck.  Our study, however, is concerned with a more holistic assessment of accident 
risk: the probability of colliding with any other type of vehicle, and how that probability is affected by increased 
truck traffic.  This is because the probability of, say, two cars colliding is indeed influenced by the volume of trucks 
that these cars must contend with. 
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2.2 Average Risk 
  
 We begin by writing Ait as the number of accidents that occur on route i during month t, 
where an accident is defined as a collision of any severity between two or more vehicles of any 
type.  That number of accidents depends on the route’s volume of heavy commercial trucks, vT,i,t, 
and the volume of all other vehicle types, vC,i,t, because the risk of an accident, r, depends on 
those volumes (and how those vehicles interact with one another).  Henceforth, for simplicity, 
we refer to vC,i,t and vT,i,t as "car" and "truck" volumes.  And focusing now on a given route 
during a given month, we can omit the i and t subscripts for ease of exposition and write 
 

 vvvrvvvvrvvA TCTCTCTC  ),()(),(),(       (1) 

 

where TC vvv  , i.e. v is the total traffic volume across all vehicle types.  The average number 

of accidents per unit of traffic volume defines average risk, i.e. the empirical probability of an 
accident, given by 
 

 
v

A
r             (2) 

 
on route i during month t. 
 
 
2.3 Marginal and External Risk 
 
 The change in the number of accidents resulting from a marginal increase in truck 
volume is given by 
 

 v
v

r
r

v

A

TT 






         (3) 

 
To interpret this expression, consider the entry of one more truck on given a highway.  The 
impact of the additional truck has two components.  The first, r, is the average risk of an 
accident, which is the number of accidents the entering truck is expected to be involved in.  From 
that truck driver’s perspective, r is the risk he accepts when deciding to enter the highway.  He 
does not consider, however, the additional risk that he imposes on the highway’s existing 
vehicles.  In other words, he does not take into account the additional risk that is external to his 
entry decision.  This risk externality is given by the second component on the right-hand-side of 

(3), v
v

r

T


, which shows each vehicle’s increased risk due to the additional truck, multiplied by 
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the number affected vehicles.  Thus, the increase in the number of accidents due to a marginal 
increase in truck volume includes the external risk generated by the additional trucks.  
Economists are interested in such externalities because they contribute to a gap between the 
private and social costs of truck traffic that could result in inefficiently high truck volumes.9 
 

 The 
Tv

r




 term in (3) defines the marginal risk generated by increased truck traffic — the 

increase in average risk, r, resulting from a marginal increase in truck volume, vT (noting that a 
marginal risk of zero implies no risk externality).  And rearranging  (3) yields 
 

 r
v

A
v

v

r

TT









         (4) 

 
which provides a convenient way to measure the external risk generated by trucks on each 
highway.10   Further algebraic manipulation of (4) yields 
 

 
v

v

A

v

v

A

r

v

v

r TT

T

T

T









         (5) 

 
which has an especially useful interpretation.  The left-hand-side of (5) gives the percentage 
change in the (average) risk of an accident resulting from a one-percent increase in truck volume; 
it is the elasticity of accident risk with respect to truck volume.  The first term on the right-hand-
side of (5) is the percentage increase in the number of accidents due to a one-percent increase in 
truck volume; it is the elasticity of the accident rate with respect to truck volume.  The remaining 
term in (5) is the proportion of total traffic volume that comprises trucks. 
 
 For simplicity we can write (5) as 
 

 
v

v
EE T

vAvr TT
 ,,          (6) 

 

                                                 
9 This is because the marginal social cost of each truck trip exceeds its marginal private cost, but each truck’s travel 
decision is based only on the latter.  In equilibrium, then, the marginal social cost of the last truck trip exceeds its 
marginal social benefit, resulting in a “deadweight loss” due to excessive truck traffic.  A more thorough analysis of 
these externalities, however, is beyond the scope of this study.  Instead we simply report externality levels in the 
empirical analysis that follows, primarily for those interested in applying them to externality-related policies such as 
road pricing. 
10 Note that the dependent variable in our empirical analysis is the number of accidents, A, as opposed to average 
risk, r.  Hence we must derive a way to estimate marginal risk from the marginal effect of truck volume on the 
number of accidents. 
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where 
r

v

v

r
E T

T
vr T 


,  and 

A

v

v

A
E T

T
vA T 


, .  We refer to 

TvrE ,  as the "marginal risk elasticity", 

which provides a unit-free way to compare marginal risk across multiple routes.  Moreover, it 
shows that marginal risk is positive when a proportional increase in accidents on a given route 
exceeds the proportion of trucks travelling that route. 
 
 
2.3 Summary of Risk Measures 
 
 In our empirical analysis that follows, we report estimates of the average risk, the 
marginal risk elasticity, and the risk externality for each route in our dataset.  Table 1 below 
summarizes these risk measures for easy reference. 
 
 

Table 1 
Summary of Accident Risk Measures 

 

 

Risk Measure Description Equation 
Average Risk Number of accidents per million vehicle-miles (2) 
Marginal Risk Elasticity Percentage increase in average risk due to a 

one-percent increase in traffic volume 
(6) 

External Risk Marginal risk multiplied by traffic volume (4) 
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3. Empirical Setting and Estimation 
 
 
3.1 Empirical Setting and Estimation Overview 
 
 Our empirical analysis is based on monthly accident and highway data for several 
interstates and state routes in California from January 2007 through April 2010 (40 months).  We 
restrict our analysis to California data primarily due the availability of unusually disaggregated 
information from the California Department of Transportation (Caltrans).  The time period for 
our data allows us to exploit variation in truck volumes and corresponding accident rates due to 
recent volatility in economic conditions. 
 
 We pay special attention to two highways that carry the heaviest concentrations of 
drayage traffic: Interstate 110 and Interstate 710, which terminate at the Port of Los Angeles and 
the Port of Long Beach, respectively.  Figure 1 depicts these highways and their proximity to the 
San Pedro Bay port complex appearing at the bottom of the figure. 
 
 

Figure 1 
Map View of "Drayage Routes" 

 

   Source: Google Maps. 
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The figure illustrates why most ocean containers drayed in or out of these ports typically travel 
along Interstates 110 and 710.  As such, we define their northbound and southbound segments as 
"drayage routes".  This is not saying that other highways do not carry drayage traffic originating 
from the ports.  Indeed, drayed ocean containers often travel along several Los Angeles 
highways, such as State Routes 60 and 91, and Interstate 210, on their way to warehouses in San 
Bernardino and Riverside counties.  Interstates 110 and 710, however, indubitably carry the 
heaviest concentrations of drayage traffic.11 
 

The basic procedure, then, is to compare their accident-risk measures to those of other 
urban highways in order to assess the relative risk imposed by dray drivers.  We do so by 
estimating the relationship between the monthly number of accidents on each highway, and the 
truck volumes they carry, controlling for important factors such as car volumes, average vehicle 
speeds, highway characteristics, and temporal effects.  The results of this estimation procedure 
are then used to calculate the risk measures described above in Section 2. 
 
 
3.2 Data 
  
 All of our accident and traffic data are drawn from the California Freeway Performance 
Measurement System (PeMS), maintained by the Department of Electrical Engineering and 
Computer Sciences at the University of California, Berkeley.  PeMS collects traffic data from 
sensors placed throughout the California highway network, which are installed and maintained 
by Caltrans.12  And PeMS collects accident data from California Highway Patrol (CHP) incident 
reports and the Caltrans Traffic Accident Surveillance and Analysis System (TASAS).  Our data 
also include monthly average retail prices for gasoline (all grades) gathered from the Federal 
Reserve Bank of St. Luis Economic Data depository (FRED).  We use these gasoline prices to 
control for the general economic conditions that they are closely correlated with. 
 
 There are 254 California highways monitored in each direction by PeMS (i.e. the system 
monitors 508 highway directions; we refer to each direction herein as a "route").  However, the 
traffic sensors used for monitoring are often prone to failure.  We thus devoted considerable 
efforts to validating our data and removing unreliable information, which reduced the number of 
highways available for analysis.  Moreover, there is an inconsistency between the number of 
accidents that occurred on a given route and the traffic volume on that route.  This is because 
accidents are reported along each highway’s entire length, whereas traffic volumes are only 
available for the monitored portions of those highways.  As such, we were forced to "impute" 
traffic volumes for certain routes, and discard data from highways with an insufficient proportion 

                                                 
11 See, for example, Meyer, Mohaddes Associates, Inc. (2004). 
12 These sensors are usually “inductive loop detectors”, which can sense metal above them to compute traffic 
volumes.  Two detectors placed in series can classify vehicles (e.g. “car” or “truck”) and measure their speeds.  
When only one detector is available, vehicle classifications and speeds must be imputed — see Kwon et al. (2002). 
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of monitored miles.13  Finally, the accident-reporting link between PeMS and the CHP and 
TASAS systems failed on occasion, which compelled us to painstakingly remove anomalous 
accident data. 
 
 This left us with reliable data on 114 directional routes, or 57 highways. From these data 
we assembled an unbalanced panel of 4,249 observations, corresponding to the 40-month time 
span for these data.14  Table 2 provides summary statistics for these panel data. 
 
 

Table 2 
Panel Data Summary Statistics 

 
Variable Mean Std. Dev. 
   
Drayage Routes   
Accidents (count) 209.79 74.70 
Truck Volume (millions of truck-miles) 3.04 0.73 
Car Volume (millions of car-miles) 64.09 15.11 
Average Vehicle Speed (miles per hour) 57.58 3.06 
Truck Concentration (truck percentage of total volume) 4.62% 1.04% 
   
Other Routes   
Accidents (count) 167.70 243.54 
Truck Volume (millions of truck-miles) 8.00 16.04 
Car Volume (millions of car-miles) 171.47 320.36 
Average Vehicle Speed (miles per hour) 61.30 3.82 
Truck Concentration (truck percentage of total volume) 4.01% 1.74% 
   
All Routes   
Accidents (count) 169.28 239.48 
Truck Volume (millions of truck-miles) 7.81 15.76 
Car Volume (millions of car-miles) 167.42 314.95 
Average Vehicle Speed (miles per hour) 61.16 3.86 
Truck Concentration (truck percentage of total volume) 4.04% 1.72% 
   
Number of Routes 114 

4,249 Number of Panel Observations 

 
 

                                                 
13 Specifically, we omit data from highways that are monitored for less than 60% of their lengths.  This criterion is 
based on out-of-sample forecasting experiments using data from highways with 100% monitored miles.  In those 
experiments, predictive models of traffic volumes that included at least 60% of the available conditioning data 
performed reasonably well. 
14 “Panel” refers to a combination of cross-sectional and time-series data.  A balanced panel would have comprised 
114 x 40 = 4,560 observations.  Unreliable observations were sometimes removed only for certain months, however, 
yielding an unbalanced panel. 
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Note that each observation in our panel corresponds to one route during one month.  The mean 
values reported in Table 2 are thus averaged over routes and months.  For example, the mean 
number of accidents per month across all routes is 169.28. 
 
 
3.3 Estimation Methods 
 
 The panel nature of our data allows us to exploit information across highways and time 
using panel-data regression methods.  Our dependent variable is the number of accidents, of any 
severity, between two or more vehicles of any type.  Our independent variables, chosen after 
numerous model-specification searches, are heavy-truck volume (millions of truck-miles), car 
volume (millions of car-miles), average vehicle speed (miles per hour), average retail gas price 
(dollars per gallon), and a "dummy variable" set equal to one for observations after December 
2009 — corresponding to when the most recent phase of the Clean Truck Program was 
implemented at the San Pedro Bay ports.15  
 
 We estimate the relationship between our dependent and independent variables using 
"fixed-effects panel regression", with both route-specific and temporal fixed effects that allow us 
to control for both observable and unobservable characteristics of each route and month that are 
not included as independent variables.  Of particular interest are "interactions" between the route 
fixed effects and truck volumes.  The effects of these interaction terms tell us how a marginal 
increase in truck volume on a specific route affects the number of accidents we would expect on 
that route in a given month.  This effect is measured by the "coefficient" on a given route's 
interaction term and corresponds to equation (3) in Section 2.  That coefficient allows us to 
calculate the marginal risk elasticity for each route, given by equation (6). 
 
 The fact that our dependent variable is the number of accidents may seem ponderous, 
given that marginal risk and its elasticity could be estimated using average risk as the dependent 
variable.  In short, the empirical relationship between the number of accidents and truck volume 
is quite strong, whereas the relationship between average risk and truck volume is rather 
"noisy".16  Moreover, interpreting the coefficients of a model with average risk as the dependent 
variable can be troublesome, given that the coefficient purports to hold truck volumes constant, 
but average risk itself changes with truck volumes.  Figure 2 plots the number of accidents on 
each highway for each month against their corresponding truck volumes to illustrate their 
empirical relationship. 
                                                 
15 In an effort to reduce diesel emissions from port trucking operations, both ports banned trucks built prior to 1989, 
effective October 1, 2008 (with some delay, however, in actual enforcement).  Beginning January 1, 2010, the ports 
further banned trucks built before 1994, and trucks built before 2004 that had not been retrofitted with clean-diesel 
emissions systems.  Moreover, the Port of Los Angeles has attempted to ban trucks operated by independent owners 
(i.e. "non-company" drivers), although this policy is currently being challenged in court. 
16 For instance, on a given route we might expect an increase in truck volume to increase the risk of an accident, but 
at the same time that increased volume naturally reduces average risk, r, by increasing its denominator.  
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 We proceed now with a more formal exhibition of our estimation framework.  The basic 
structure of our fixed-effects panel regression framework takes the form 
 

 itiitttiiitit uzmhxA          (7) 

 
where Ait is the number of accidents on route i during month t, and xit is a 1xk vector of 
independent variables including car volume, average vehicle speed, average retail gasoline price, 
and a Clean Truck Program indicator variable, for that route and month, and β is a kx1 vector of 
coefficients to be estimated.  The route and month fixed effects are hi and mt with coefficients λi 
and γt, and uit is a mean-zero disturbance term assumed to be normally distributed.  Of particular 
interest are the interactions of route fixed effects, reflecting route-specific characteristics such as 
road geometry, number of lanes, frequency of onramps, etc., with truck volume.  These 
interactions are contained in zit, and its coefficient, θi, measures the marginal effect of increased 
truck volume on the monthly number of accidents for each route, i. 
 
 The coefficients of the fixed-effects regression specification in (7) are estimated using 
ordinary least squares regression methods, after transforming (7) into mean-deviation form (to 
accommodate the fixed effects).  Robust, clustered standard errors are calculated to account for 
heteroskedasticity while accommodating the model's panel structure. 
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3.4 Estimation Results 
 
 Table 3 reports the coefficient estimates and standard errors from our fixed-effects panel 
regression model.17  Note that the coefficient estimates for the interactions of route fixed effects 
and truck volumes are listed by route designations such as "I110-N" indicating the northbound 
segment of Interstate 110 and "SR91-E" indicating the eastbound segment of State Route 91. 
 
 

Table 3 
Fixed-Effects Panel Regression Estimates 

 
Variable Coefficient Std. Error. t Stat. p Value 
Car Volume 0.50 0.12 4.23 0.00 
Car Volume Squared 0.00 0.00 -3.62 0.00 
Avg. Vehicle Speed 70.28 30.76 2.28 0.02 
Avg. Vehicle Speed Squared -1.23 0.53 -2.32 0.02 
Avg. Vehicle Speed Cubed 0.01 0.00 2.32 0.02 
Avg. Retail Gas Price Squared -18.60 7.09 -2.62 0.01 
Avg. Retail Gas Price Cubed 3.19 1.45 2.20 0.03 
Clean Truck Program Period Indicator 19.81 7.21 2.75 0.01 
Clean Truck Program Indicator Interaction with 
Drayage Route Indicators -7.92 5.45 -1.45 0.15 
     
Truck Volumes Interacted with Route Fixed Effects     
     
Drayage Routes     

I110-N 40.75 2.88 14.16 0.00 
I110-S 34.06 2.45 13.90 0.00 
I710-N 9.93 2.88 3.45 0.00 
I710-S 18.02 1.86 9.68 0.00 

     
Other Routes     

I10-E 23.80 1.77 13.45 0.00 
I10-W 16.13 1.59 10.12 0.00 
I105-E 11.16 4.20 2.66 0.01 
I105-W 0.21 4.91 0.04 0.97 
I15-N 7.31 1.23 5.96 0.00 
I15-S 2.28 1.56 1.47 0.15 
I205-E -14.38 3.09 -4.66 0.00 
I205-W 19.66 3.88 5.07 0.00 
I210-E 6.11 1.82 3.36 0.00 
I210-W 6.38 1.79 3.57 0.00 
I215-N 3.91 0.95 4.10 0.00 
I215-S 11.68 1.96 5.96 0.00 
I280-N 9.41 2.56 3.67 0.00 
I280-S 3.33 3.44 0.97 0.34 
     
 
     

                                                 
17 Coefficients for time fixed effects are omitted, however, for ease of exposition — a common convention when 
reporting fixed-effects panel regression estimates. 
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Variable Coefficient Std. Error. t Stat. p Value 
I405-N 32.09 1.97 16.28 0.00 
I405-S 40.69 2.28 17.82 0.00 
I5-N 8.20 1.01 8.10 0.00 
I5-S 8.51 0.95 8.97 0.00 
I580-E 1.43 1.22 1.18 0.24 
I580-W -0.64 1.75 -0.37 0.72 
I605-N 22.54 2.56 8.80 0.00 
I605-S 24.61 2.48 9.92 0.00 
I680-N 7.48 2.87 2.61 0.01 
I680-S -0.61 2.96 -0.21 0.84 
I8-E -9.78 2.93 -3.33 0.00 
I8-W -10.12 2.88 -3.52 0.00 
I80-E 11.69 1.17 10.00 0.00 
I80-W 7.95 1.06 7.50 0.00 
I805-N -17.32 4.98 -3.48 0.00 
I805-S -12.04 4.84 -2.49 0.01 
I880-N 17.18 2.27 7.58 0.00 
I880-S 13.17 1.75 7.53 0.00 
SR1-N -3.09 0.65 -4.73 0.00 
SR1-S -5.68 1.18 -4.80 0.00 
SR101-N 6.06 0.96 6.31 0.00 
SR101-S 4.81 0.74 6.52 0.00 
SR113-N 66.40 9.15 7.26 0.00 
SR113-S 24.53 5.28 4.65 0.00 
SR118-E -2.37 3.90 -0.61 0.54 
SR118-W -0.46 2.77 -0.17 0.87 
SR120-E -4.86 1.29 -3.75 0.00 
SR120-W 13.00 2.75 4.73 0.00 
SR134-E -28.34 9.13 -3.11 0.00 
SR134-W 16.49 7.69 2.14 0.03 
SR14-N -13.06 2.88 -4.53 0.00 
SR14-S -2.54 2.02 -1.26 0.21 
SR152-E -10.56 2.14 -4.93 0.00 
SR152-W 10.77 1.61 6.68 0.00 
SR160-N 66.95 21.80 3.07 0.00 
SR160-S -20.05 35.32 -0.57 0.57 
SR163-N -34.63 19.94 -1.74 0.09 
SR163-S -71.05 26.01 -2.73 0.01 
SR17-N 64.62 12.25 5.27 0.00 
SR17-S 44.77 5.17 8.66 0.00 
SR170-N -45.05 24.68 -1.83 0.07 
SR170-S 78.85 15.44 5.11 0.00 
SR180-E -12.75 2.45 -5.20 0.00 
SR180-W -3.54 2.93 -1.21 0.23 
SR22-E -10.51 4.76 -2.21 0.03 
SR22-W -17.75 6.04 -2.94 0.00 
SR23-N -15.94 2.75 -5.80 0.00 
SR23-S -17.20 3.07 -5.60 0.00 
SR237-E 16.93 4.37 3.87 0.00 
SR237-W 28.58 8.24 3.47 0.00 
SR238-N 21.91 3.36 6.53 0.00 
SR238-S -25.70 3.43 -7.50 0.00 
SR24-E 13.29 2.41 5.52 0.00 
SR24-W 68.36 11.21 6.10 0.00 
SR37-E -44.17 7.98 -5.53 0.00 
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Variable Coefficient Std. Error. t Stat. p Value 
SR37-W -39.19 9.55 -4.10 0.00 
SR4-E -12.08 2.53 -4.77 0.00 
SR4-W -10.24 1.96 -5.24 0.00 
SR41-N -5.62 1.14 -4.92 0.00 
SR41-S -5.31 0.86 -6.17 0.00 
SR51-N -7.21 11.02 -0.65 0.52 
SR51-S -10.99 9.60 -1.14 0.26 
SR52-E -69.93 16.55 -4.23 0.00 
SR52-W -72.27 19.88 -3.63 0.00 
SR55-N -17.78 7.39 -2.40 0.02 
SR55-S -7.07 6.74 -1.05 0.30 
SR56-E 17.02 13.65 1.25 0.22 
SR56-W 38.62 57.03 0.68 0.50 
SR57-N 0.37 3.25 0.11 0.91 
SR57-S 10.62 3.89 2.73 0.01 
SR60-E 24.31 1.98 12.29 0.00 
SR60-W 22.56 1.71 13.15 0.00 
SR65-N 45.19 7.19 6.28 0.00 
SR65-S -11.53 2.52 -4.58 0.00 
SR71-N -25.16 5.96 -4.23 0.00 
SR71-S -61.57 9.02 -6.82 0.00 
SR73-N 6.41 3.20 2.00 0.05 
SR73-S -4.55 3.64 -1.25 0.21 
SR78-E -8.90 1.64 -5.42 0.00 
SR78-W -8.37 1.30 -6.46 0.00 
SR84-E -5.04 1.01 -4.98 0.00 
SR84-W 1.01 2.14 0.47 0.64 
SR85-N 2.96 5.75 0.51 0.61 
SR85-S -5.17 6.27 -0.82 0.41 
SR87-N 83.40 31.68 2.63 0.01 
SR87-S -5.11 6.51 -0.78 0.43 
SR91-E 33.28 1.86 17.93 0.00 
SR91-W 27.50 1.84 14.98 0.00 
SR92-E -47.32 11.21 -4.22 0.00 
SR92-W 59.09 11.60 5.09 0.00 
SR94-E -39.81 5.22 -7.62 0.00 
SR94-W -5.64 3.71 -1.52 0.13 
SR99-N 3.12 0.61 5.12 0.00 
SR99-S 2.64 0.61 4.33 0.00 
US50-E -8.75 2.98 -2.93 0.00 
US50-W -10.83 3.18 -3.40 0.00 

     
Observations 
Routes 

4,249 
114 

0.61 
0.94 
0.92 

R2 Within Routes 
R2 Between Routes 
R2 Overall 

 
 
 The R2 values reported at the bottom of Table 3 demonstrate a fairly strong statistical fit 
between our regression model and data.  The model explains about 61% of the variation in 
accident rates within each route over time, 94% of the variation between routes, and 92% overall. 
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The table also shows that the coefficients pertaining to car volume, average vehicle speed, and 
average gasoline price each carry their expected sign, and are statistically significant at the 5% 
level or better.  The estimates for car volume and car volume squared, speed, speed squared, and 
speed cubed, and gasoline price and gasoline-price-squared reflect significant, nonlinear 
relationships with accident rates.18  Although these variables are not of direct interest, it is 
important to control for their influences when examining the relationship between accident rates 
and truck volumes.  In other words, omitting them would "pollute" our estimates of this 
relationship to the extent that those variables are correlated with truck volumes. 
 
 Figure 3 shows the relationship between the accident rates observed in the data and the 
those predicted by our regression model, further illustrating the model's "goodness of fit" (noting 
that a "perfect fit" would produce a straight line from the origin at a 45-degree angle). 
 
 

Figure 3 
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Likewise, Figure 4 plots both our predicted and observed accident rates against truck volumes, 
showing their fairly strong relationship when conditioned on truck volumes. 
 
 

                                                 
18 Level values of gasoline prices were omitted, curiously, due to multicollinearity with their squared values.  
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Figure 4 
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 In Table 3, the coefficient for the Clean Truck Program variable is positive and 
significant, showing an average rise in accident rates on all routes in our sample after December, 
2009.  We also interacted this variable with combined fixed effects for the drayage routes 
(northbound and southbound directions of Interstates 110 and 710) to loosely examine the effects 
of the Clean Truck Program on those routes.  Table 3 reports a negative coefficient for this 
interaction term, suggesting a decline in accident rates on the drayage routes after December, 
2009, although this effect is only distinguishable form zero at the 15% level of significance.  
Again, this variable is only of ancillary interest and serves primarily as a control variable. 
 
 Our key estimates of interest are coefficients on the interactions of truck volumes with 
route-specific fixed effects, including those for the drayage routes.  Table 4 shows that most, 
although not all, of these coefficient estimates are significant at the 5% level or better.  Among 
the statistically-significant estimates, 52 are positive and 37 are negative.  In other words, a 
marginal increase in truck volume increases the accident rate on 52 of the routes in our sample, 
including the drayage routes, but decreases the accident rate on 37 of them.  The finding that 
accident rates on some routes actually fall with increased truck traffic may be counterintuitive at 
first glance.  This is consistent, however, with the results of previous empirical studies that 
estimate a negative relationship between accident rates (and even average risk) and traffic 
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volume.19  One way to make sense of this finding is to consider an urban route where increased 
truck traffic generates visibly more hazardous driving conditions.  Motorists might then respond 
by driving more vigilantly — a phenomenon known in the accident literature as "risk 
compensation" — and the net effect in some cases could be a reduction in accident rates (and, 
perhaps, average risk as well).20 
 
 The mean of the statistically-significant coefficients is 5.31, suggesting that on average a 
one-million vehicle-mile increase in truck volume results in an increase of 5.31 accidents per 
month.  Note, however, that these coefficients are estimated for routes with varying traffic 
volumes, i.e. at various levels of exposure to accident risk.  As such they cannot be used alone to 
compare the relative danger of the trucks traveling them.  This comparison is accomplished 
instead by using these coefficient estimates to calculate the risk measures defined in Section 2 
and discussed below in Section 4, which take into account the traffic volumes on each route.  

                                                 
19 See, for example, Newbery (2005). 
20 See Steimetz (2008). 
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4. Risk Measurement and Policy Implications 

 
 
4.1 Risk Measurement Overview 
 
 Following the analysis developed in Section 2, we assess the relative danger of trucks 
travelling on each route by estimating and comparing three route-specific risk measures: average 
risk, marginal risk (elasticity), and external risk.  In other words, we make indirect comparisons 
of truck risk by assessing the risk generated on the routes they travel, using these three risk 
metrics.  And in our comparisons we pay particular attention to drayage routes to explore the 
notion that dray drivers are inherently more dangerous than drivers of other heavy commercial 
trucks. 
 
 
4.2 Average and Marginal Risk 
 
 Recall that average risk is the number of accidents on a given route, divided by the total 
number of vehicle-miles (millions of vehicle-miles in our case) traveled on that route.  This 
provides an empirical estimate of the probability that a vehicle travelling that route will be 
involved in a collision (with any other type of vehicle).  In calculating average risk for each of 
the 114 routes in our sample, we use the median number of accidents and vehicle-miles from 
January through April of 2010 (i.e. from the last four months of observations in our sample).  We 
use medians from these latter months to reasonably reflect the most recent conditions on the 
routes we study.  Table 4 reports these average-risk measures for each route, ranked in 
descending order with drayage routes indicated in boldface type. 
 
 Also recall that marginal risk gives the change in the (average) risk of an accident on a 
given route due to a marginal increase in truck volume on that route.  This is a somewhat 
economic way of characterizing truck risk because it identifies, at the margin, routes where an 
additional truck is likely to  "do the most damage"; likewise, it identifies the routes for which 
reductions in truck traffic are likely to have the biggest risk-reduction impact.  Table 5 reports 
marginal risk elasticities for each route, based on the coefficient estimates given in Table 3 and 
on median truck volumes, accident rates, and the proportions of truck volumes out of total 
vehicle volumes from January through April of 2010.  These elasticities are only reported for 
routes with statistically-significant coefficient estimates in Table 3, based on a 5% significance 
level.  They give the percentage increase in the risk of an accident on each route due to a one-
percent increase in truck volume on that route, and are ranked in descending order with drayage 
routes indicated in boldface type.  Note that negative elasticities are reported for 37 of the 89 
routes in the table, suggesting that increased truck traffic actually reduces the risk of an accident 
on those routes.  Again, this finding may be somewhat counterintuitive, but is consistent with 



METRANS 09-01 

20 
 

several earlier findings in the accident literature.21  Moreover, our mean risk elasticity across all 
routes is roughly zero,  which is coincides with the "official" estimates of the United States 
Federal Highway Administration and United Kingdom Department of Transport for risk 
elasticities with respect to overall traffic volumes.22 
 
 

Table 4 
Ranking of Routes by Average Risk 

 

Rank Route 
Average 

Risk  Rank Route 
Average 

Risk  Rank Route 
Average 

Risk  Rank Route 
Average 

Risk 
1 SR87-N 3.08  30 SR71-N 1.59  59 SR17-N 0.99  88 SR4-W 0.34 
2 I110-S 3.02  31 I210-W 1.57  60 SR73-N 0.98  89 I8-E 0.34 
3 I110-N 2.97  32 SR85-N 1.56  61 SR56-E 0.97  90 SR94-E 0.32 
4 SR87-S 2.84  33 I280-N 1.55  62 I580-E 0.95  91 SR180-W 0.29 
5 SR51-N 2.49  34 I280-S 1.54  63 SR52-W 0.93  92 SR180-E 0.23 
6 I605-N 2.41  35 SR237-W 1.51  64 SR14-S 0.93  93 SR41-S 0.22 
7 SR22-E 2.36  36 SR170-S 1.51  65 SR14-N 0.90  94 SR238-N 0.20 
8 I605-S 2.33  37 I215-S 1.50  66 US50-E 0.89  95 SR41-N 0.20 
9 SR51-S 2.22  38 SR163-S 1.47  67 SR170-N 0.86  96 SR152-W 0.19 

10 SR134-W 2.09  39 SR22-W 1.45  68 SR73-S 0.84  97 SR152-E 0.18 
11 I710-N 2.06  40 I805-S 1.38  69 I580-W 0.82  98 SR65-N 0.17 
12 SR57-S 2.05  41 SR92-E 1.33  70 SR37-W 0.81  99 SR113-N 0.17 
13 I405-N 1.98  42 SR55-N 1.31  71 SR56-W 0.78  100 SR78-E 0.16 
14 SR134-E 1.98  43 SR55-S 1.31  72 I5-N 0.76  101 SR23-N 0.16 
15 I215-N 1.97  44 I80-E 1.27  73 SR99-N 0.70  102 SR23-S 0.15 
16 SR91-E 1.92  45 SR163-N 1.26  74 SR99-S 0.69  103 SR160-S 0.14 
17 SR60-E 1.91  46 I10-W 1.25  75 I15-S 0.67  104 SR238-S 0.14 
18 I880-N 1.90  47 I10-E 1.24  76 I15-N 0.66  105 SR78-W 0.14 
19 SR60-W 1.90  48 SR37-E 1.23  77 SR52-E 0.65  106 SR65-S 0.12 
20 I105-W 1.86  49 SR71-S 1.20  78 I5-S 0.65  107 SR120-E 0.12 
21 I710-S 1.82  50 I680-N 1.16  79 SR17-S 0.64  108 SR160-N 0.12 
22 I405-S 1.82  51 I80-W 1.14  80 SR92-W 0.63  109 SR1-S 0.09 
23 I880-S 1.81  52 SR118-E 1.13  81 SR94-W 0.48  110 SR1-N 0.08 
24 I105-E 1.79  53 SR118-W 1.10  82 SR4-E 0.43  111 SR84-W 0.06 
25 SR91-W 1.74  54 SR237-E 1.09  83 I8-W 0.41  112 SR120-W 0.05 
26 SR57-N 1.68  55 SR24-W 1.06  84 SR101-N 0.40  113 SR113-S 0.05 
27 I210-E 1.67  56 I680-S 1.04  85 I205-E 0.38  114 SR84-E 0.05 
28 I805-N 1.66  57 SR24-E 1.00  86 SR101-S 0.36     
29 SR85-S 1.62  58 US50-W 0.99  87 I205-W 0.36     
               

             Mean 1.08 
             Median 1.00 
             Std. Dev. 0.76 

 
 

 
  
                                                 
21 See Vitaliano and Held (1991), Elvik (1994), Newbery (1988), Dickerson et al. (2000), and Newbery (2005). 
22 U.K. Department of Transport (1981) and U.S. Federal Highway Administration (1982). 
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 In Table 4 we see that the mean average risk across all 114 routes in our sample is 1.08 
accidents per million vehicle-miles, with a standard deviation of 0.76.  The highest average risk 
belongs to the northbound segment of State route 87, — an urban route running through 
downtown San Jose.  Following closely behind are two of the drayage routes: the northbound 
and southbound directions of Interstate 110, with average risks that are about 2.50 standard 
deviations above the mean.  The other drayage routes, northbound and southbound Interstate 
710, rank 11th and 21st, respectively, with average risks that are about 0.80 to 1.29 standard 
deviations above the mean.  Thus it appears that the drayage routes — especially Interstate 110 
— can be characterized as relatively hazardous from the standpoint of average risk, lending a 
degree of credence to the notion that drayage trucks are "more dangerous" than other types of 
heavy commercial trucks.  Note, however, that other routes carrying less drayage traffic do 
indeed rank ahead of Interstate 710, which arguably carries the nation's highest concentration of 
dray drivers.23 
 
 In Table 5, however, we see that the risk rankings change considerably in terms of 
marginal risk.24  The highest marginal risk is on the northbound segment of State route 160, 
which runs through downtown Sacramento.  The drayage routes rank 30th, 32nd, 36th, and 47th 
out of the 89 routes — 52 of which have positive marginal risk elasticities.  Among those routes 
with positive risk elasticities, the mean is 1.32 with a standard deviation of 1.95, suggesting that, 
on average, a one-percent increase in truck volume yields a 1.32% increase in accident risk.  For 
the drayage routes, the marginal risk elasticity ranges from 0.18 to 0.43, i.e. 0.46 to 0.58 standard 
deviations below the mean of the positive marginal risk elasticities.  The drayage route risk 
elasticities are still above the overall average of 0.12 when also considering routes with negative 
risk elasticities, but they still rank considerably behind several other routes.  Thus, from the 
standpoint of marginal risk, it would be difficult to characterize drayage routes (or the dray 
drivers travelling them) as especially "dangerous".  Put differently, increasing the truck volume 
on westbound State Route 120 by one percent would generate about forty-two times the 
percentage increase in average risk that a one-percent increase in truck traffic on northbound 
Interstate 710 would, despite the fact that both routes carry similar concentrations of heavy 
trucks (5.31% vs. 5.18%). 

                                                 
23 Sahagun (2008). 
24 Only estimates that are statistically-significant at the 5% significance level are reported. 
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Table 5 
Ranking of Routes by Marginal Risk Elasticity 

 

Rank Route 

Marginal 
Risk 

Elasticity  Rank Route 

Marginal 
Risk 

Elasticity  Rank Route 

Marginal 
Risk 

Elasticity  Rank Route 

Marginal 
Risk 

Elasticity 
1 SR160-N 8.51  24 SR101-N 0.52  47 I710-N 0.18  70 SR163-S -0.99 
2 SR120-W 7.69  25 SR101-S 0.52  48 SR73-N 0.18  71 SR52-W -1.00 
3 SR65-N 5.97  26 I405-N 0.47  49 SR57-S 0.17  72 SR71-S -1.18 
4 SR113-S 5.84  27 SR60-W 0.46  50 I210-W 0.16  73 SR92-E -1.49 
5 I205-W 4.70  28 I605-S 0.45  51 I210-E 0.13  74 SR180-E -1.53 
6 SR238-N 3.12  29 I5-N 0.45  52 I215-N 0.03  75 SR1-S -1.57 
7 SR17-S 3.06  30 I110-N 0.43  53 SR22-E -0.14  76 SR52-E -1.64 
8 SR152-W 3.04  31 I605-N 0.42  54 US50-E -0.18  77 SR41-N -1.65 
9 SR92-W 3.02  32 I110-S 0.41  55 US50-W -0.26  78 SR78-E -2.05 

10 SR17-N 2.33  33 SR24-E 0.37  56 I805-S -0.32  79 SR65-S -2.06 
11 SR113-N 2.22  34 I880-N 0.35  57 SR22-W -0.33  80 SR120-E -2.47 
12 SR24-W 1.77  35 I880-S 0.33  58 SR134-E -0.35  81 SR1-N -2.78 
13 SR237-E 1.48  36 I710-S 0.33  59 SR55-N -0.35  82 SR23-N -2.86 
14 SR170-S 1.22  37 I15-N 0.30  60 I805-N -0.39  83 I205-E -2.99 
15 SR237-W 1.00  38 I80-E 0.26  61 SR14-N -0.39  84 SR94-E -2.99 
16 SR87-N 0.82  39 SR134-W 0.25  62 SR37-E -0.39  85 SR152-E -3.05 
17 SR91-E 0.71  40 I215-S 0.24  63 SR71-N -0.41  86 SR23-S -3.22 
18 I405-S 0.70  41 I80-W 0.23  64 I8-W -0.62  87 SR78-W -3.31 
19 I10-E 0.68  42 SR99-N 0.21  65 SR4-W -0.76  88 SR238-S -5.29 
20 SR91-W 0.63  43 I280-N 0.21  66 SR4-E -0.80  89 SR84-E -5.45 
21 I5-S 0.57  44 I680-N 0.20  67 SR37-W -0.80     
22 I10-W 0.57  45 SR99-S 0.19  68 I8-E -0.84     
23 SR60-E 0.57  46 I105-E 0.19  69 SR41-S -0.90     
               

     Mean 0.12    Mean of Positive Elasticities 1.32 
     Median 0.19    Median of Positive Elasticities 0.47 
     Std. Dev. 2.24    Std. Dev. of Positive Elasticities 1.95 

 
 
 Table 6 reports the lower and upper bounds of the 95% confidence intervals for the 
marginal risk elasticity estimates given in Table 5.  Those intervals can be used to gauge 
statistical differences in the elasticity estimates across routes (at the 5% significance level). 
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Table 6 
95% Confidence Intervals for Marginal Risk Elasticity Estimates 

 

Route 

 
Lower 
Bound 

 
Upper 
Bound  Route 

 
Lower 
Bound 

 
Upper 
Bound  Route 

 
Lower 
Bound 

 
Upper 
Bound  Route 

 
Lower 
Bound 

 
Upper 
Bound 

SR160-N 3.07 13.95  SR101-N 0.35 0.70  I710-N 0.05 0.31  SR163-S -1.69 -0.29 
SR120-W 4.49 10.89  SR101-S 0.35 0.68  SR73-N -0.03 0.39  SR52-W -1.54 -0.47 
SR65-N 4.10 7.83  I405-N 0.41 0.53  SR57-S 0.02 0.33  SR71-S -1.51 -0.85 
SR113-S 3.37 8.31  SR60-W 0.39 0.54  I210-W 0.04 0.28  SR92-E -2.16 -0.82 
I205-W 2.85 6.54  I605-S 0.35 0.55  I210-E 0.02 0.24  SR180-E -2.09 -0.96 
SR238-N 2.17 4.07  I5-N 0.33 0.57  I215-N 0.00 0.06  SR1-S -2.20 -0.94 
SR17-S 2.35 3.76  I110-N 0.37 0.50  SR22-E -0.24 -0.04  SR52-E -2.39 -0.89 
SR152-W 2.13 3.95  I605-N 0.31 0.52  US50-E -0.29 -0.07  SR41-N -2.28 -1.02 
SR92-W 1.85 4.20  I110-S 0.35 0.48  US50-W -0.40 -0.12  SR78-E -2.77 -1.32 
SR17-N 1.45 3.20  SR24-E 0.23 0.51  I805-S -0.54 -0.09  SR65-S -2.94 -1.19 
SR113-N 1.62 2.83  I880-N 0.25 0.45  SR22-W -0.53 -0.13  SR120-E -3.72 -1.21 
SR24-W 1.19 2.35  I880-S 0.23 0.43  SR134-E -0.55 -0.14  SR1-N -3.91 -1.66 
SR237-E 0.68 2.29  I710-S 0.26 0.40  SR55-N -0.62 -0.08  SR23-N -3.82 -1.90 
SR170-S 0.74 1.69  I15-N 0.19 0.41  I805-N -0.59 -0.19  I205-E -4.21 -1.76 
SR237-W 0.40 1.59  I80-E 0.20 0.31  SR14-N -0.55 -0.23  SR94-E -3.76 -2.23 
SR87-N 0.19 1.45  SR134-W -0.01 0.52  SR37-E -0.53 -0.26  SR152-E -4.24 -1.86 
SR91-E 0.63 0.79  I215-S 0.15 0.33  SR71-N -0.59 -0.23  SR23-S -4.33 -2.10 
I405-S 0.62 0.78  I80-W 0.16 0.30  I8-W -0.95 -0.29  SR78-W -4.30 -2.32 
I10-E 0.58 0.79  SR99-N 0.11 0.31  SR4-W -1.03 -0.48  SR238-S -6.67 -3.92 
SR91-W 0.54 0.72  I280-N 0.07 0.34  SR4-E -1.11 -0.48  SR84-E -7.57 -3.32 
I5-S 0.44 0.71  I680-N 0.02 0.39  SR37-W -1.17 -0.42     

I10-W 0.45 0.69  SR99-S 0.07 0.31  I8-E -1.31 -0.36     

SR60-E 0.47 0.66  I105-E 0.02 0.36  SR41-S -1.18 -0.63     

 
 
4.3 External Risk 
 
 As discussed in Section 2, external risk characterizes the additional accident risk imposed 
on all of the highway's (affected) travelers when an additional truck joins them.  Economists care 
about external risk because it corresponds directly to the deadweight loss that could result from 
"too many" truck trips in terms of accident risk.  And when multiplied by what these motorists 
are collectively willing to pay to avoid such additional risk, external risk can (inter alia) 
determine the tolls levied on trucks to reduce their travel to an economically-efficient level.25 
 
 Table 7 reports our external risk calculations for each route, ranked in descending order 
with drayage routes indicated in boldface type.26  State Route 87 northbound tops the list, due to 
a combination of high marginal risk and traffic volume, suggesting that trucks traveling this 
route impose the largest risk externalities among the routes in our sample.27 

                                                 
25 See Jansson (1994). 
26 Only estimates that are statistically-significant at the 5% significance level are reported. 
27 Put differently, this route carries the most inefficiently-high volume of trucks with regard to accident risk. 
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Table 7 
Ranking of Routes by External Risk 

 

Rank Route 
External 

Risk  Rank Route 
External 

Risk  Rank Route 
External 

Risk  Rank Route 
External 

Risk 
1 SR87-N 80.32  24 I205-W 19.31  47 I210-W 4.81  70 SR180-E -12.97 
2 SR170-S 77.34  25 I710-S 16.20  48 SR101-S 4.45  71 I805-S -13.42 
3 SR24-W 67.29  26 SR237-E 15.84  49 I210-E 4.44  72 SR14-N -13.96 
4 SR160-N 66.83  27 I880-N 15.28  50 SR99-N 2.42  73 I205-E -14.77 
5 SR113-N 66.23  28 I10-W 14.88  51 SR99-S 1.95  74 SR23-N -16.10 
6 SR17-N 63.63  29 SR134-W 14.39  52 I215-N 1.94  75 SR23-S -17.35 
7 SR92-W 58.46  30 SR120-W 12.95  53 SR1-N -3.16  76 I805-N -18.98 
8 SR65-N 45.02  31 SR24-E 12.29  54 SR120-E -4.98  77 SR55-N -19.09 
9 SR17-S 44.13  32 I880-S 11.36  55 SR84-E -5.08  78 SR22-W -19.20 
10 I405-S 38.87  33 SR152-W 10.59  56 SR41-S -5.53  79 SR238-S -25.85 
11 I110-N 37.78  34 I80-E 10.42  57 SR1-S -5.77  80 SR71-N -26.75 
12 SR91-E 31.37  35 I215-S 10.18  58 SR41-N -5.81  81 SR134-E -30.32 
13 I110-S 31.04  36 I105-E 9.37  59 SR78-W -8.51  82 SR37-W -40.00 
14 I405-N 30.11  37 SR57-S 8.57  60 SR78-E -9.06  83 SR94-E -40.13 
15 SR237-W 27.07  38 I710-N 7.87  61 US50-E -9.64  84 SR37-E -45.39 
16 SR91-W 25.76  39 I280-N 7.86  62 I8-E -10.12  85 SR92-E -48.66 
17 SR113-S 24.48  40 I5-S 7.86  63 I8-W -10.52  86 SR71-S -62.77 
18 I10-E 22.56  41 I5-N 7.44  64 SR4-W -10.58  87 SR52-E -70.58 
19 SR60-E 22.40  42 I80-W 6.81  65 SR152-E -10.74  88 SR163-S -72.51 
20 I605-S 22.28  43 I15-N 6.65  66 SR65-S -11.65  89 SR52-W -73.20 
21 SR238-N 21.71  44 I680-N 6.32  67 US50-W -11.83     
22 SR60-W 20.66  45 SR101-N 5.66  68 SR4-E -12.51     
23 I605-N 20.13  46 SR73-N 5.43  69 SR22-E -12.87     

               
     Mean 4.25    Mean of Positive External Risk 23.25 

     Median 5.66    Median of Positive External Risk 15.56 
     Std. Dev. 30.63    Std. Dev. of Positive External Risk 21.11 

 

 
 The table also shows that the drayage routes rank 11th, 13th, 25th, and 38th among these 
routes.  The average external risk across all routes is 4.25, and the average across routes with 
positive risk externalities is 23.25.  Among these routes with positive risk externalities, Interstate 
110 in both directions exhibits larger than average truck risk externalities, whereas Interstate 710 
in both directions exhibits smaller than average externalities.  Although it is difficult to draw any 
general conclusions about the drayage routes from these findings, it may be worth noting that 
none of them are among the top ten routes in terms of the external risk generated by heavy 
trucks.  In other words, none of the drayage routes are among the top-ten least-efficient routes 
due to risk externalities generated by excessive truck volume. 
 
 Table 8 reports the lower and upper bounds of the 95% confidence intervals for the 
external risk estimates given in Table 7.   
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Table 8 
95% Confidence Intervals for External Risk Estimates 

 

Route 

 
Lower 
Bound 

 
Upper 
Bound  Route 

 
Lower 
Bound 

 
Upper 
Bound  Route 

 
Lower 
Bound 

 
Upper 
Bound  Route 

 
Lower 
Bound 

 
Upper 
Bound 

SR87-N 18.24 142.40  I205-W 11.71 26.90  I210-W 1.31 8.32  SR180-E -17.78 -8.17 
SR170-S 47.08 107.60  I710-S 12.56 19.85  SR101-S 3.00 5.89  I805-S -22.90 -3.94 
SR24-W 45.33 89.26  SR237-E 7.27 24.41  I210-E 0.88 8.00  SR14-N -19.61 -8.31 
SR160-N 24.11 109.55  I880-N 10.84 19.73  SR99-N 1.22 3.61  I205-E -20.82 -8.71 
SR113-N 48.30 84.16  I10-W 11.75 18.00  SR99-S 0.75 3.14  SR23-N -21.49 -10.71 
SR17-N 39.61 87.65  SR134-W -0.68 29.47  I215-N 0.08 3.81  SR23-S -23.37 -11.32 
SR92-W 35.71 81.20  SR120-W 7.56 18.33  SR1-N -4.44 -1.89  I805-N -28.74 -9.21 
SR65-N 30.93 59.12  SR24-E 7.57 17.00  SR120-E -7.52 -2.45  SR55-N -33.57 -4.60 
SR17-S 33.99 54.26  I880-S 7.94 14.79  SR84-E -7.06 -3.10  SR22-W -31.03 -7.37 
I405-S 34.39 43.34  SR152-W 7.42 13.75  SR41-S -7.22 -3.85  SR238-S -32.56 -19.13 
I110-N 32.14 43.42  I80-E 8.13 12.72  SR1-S -8.09 -3.45  SR71-N -38.43 -15.08 
SR91-E 27.73 35.01  I215-S 6.34 14.02  SR41-N -8.05 -3.58  SR134-E -48.21 -12.43 
I110-S 26.24 35.84  I105-E 1.14 17.61  SR78-W -11.05 -5.97  SR37-W -58.72 -21.28 
I405-N 26.24 33.97  SR57-S 0.94 16.20  SR78-E -12.28 -5.84  SR94-E -50.37 -29.89 
SR237-W 10.92 43.22  I710-N 2.22 13.52  US50-E -15.49 -3.80  SR37-E -61.04 -29.75 
SR91-W 22.16 29.36  I280-N 2.83 12.89  I8-E -15.87 -4.36  SR92-E -70.62 -26.69 
SR113-S 14.14 34.82  I5-S 6.00 9.72  I8-W -16.16 -4.89  SR71-S -80.46 -45.09 
I10-E 19.09 26.03  I5-N 5.46 9.42  SR4-W -14.41 -6.75  SR52-E -103.01 -38.14 
SR60-E 18.52 26.27  I80-W 4.73 8.88  SR152-E -14.94 -6.54  SR163-S -123.49 -21.53 
I605-S 17.42 27.15  I15-N 4.25 9.05  SR65-S -16.59 -6.72  SR52-W -112.17 -34.23 
SR238-N 15.13 28.29  I680-N 0.70 11.94  US50-W -18.06 -5.59     
SR60-W 17.30 24.02  SR101-N 3.78 7.54  SR4-E -17.47 -7.54     
I605-N 15.11 25.15  SR73-N -0.84 11.71  SR22-E -22.19 -3.55     

 
 
 
4.4 Policy Implications 
 
 The results presented in Tables 4–8 demonstrate that the relative risk generated by 
additional trucks on a given route depends on how such risk is characterized.  For example, it 
might be reasonable to deem trucks on northbound Interstate 710 as relatively "dangerous" 
because that route's average risk is among the highest in our sample.  In terms of marginal risk, 
however, it ranks below the median of those routes. 
 
 Choosing an "appropriate" risk measure from these results depends on the policy it is 
intended to guide.  For instance, average risk suggests that the drayage routes are relatively 
hazardous, arguably due to their heavy concentration of drayage traffic.  Marginal risk, however, 
may be more useful for policy analysis when considering the scarce resources that risk-reduction 
policies require.  For example, consider a choice between reducing truck traffic on the drayage 
routes by 10% by diverting containers to on-dock rail, or reducing truck traffic on State Route 17 
— a winding, hilly route from San Jose to Santa Cruz — by simply diverting trucks to alternative 



METRANS 09-01 

26 
 

routes.  The former would reduce the accident risk on the drayage routes by 1.8% to 4.5%, 
whereas the latter would reduce the accident risk on State Route 17 by 23.% to 30.1%.  A similar 
example could be constructed for several other highways that rank ahead of the drayage routes in 
terms of marginal risk.  It seems, then, that the biggest safety-policy "value" might come from re-
routing (or at least redistributing, perhaps during peak periods) truck traffic on several routes 
other than the drayage routes, such as State Route 113, running through Oakland, and Interstate 
405, running from Orange County to the Los Angeles County border.  External risk takes into 
account the number of vehicles affected by the marginal risk imposed by increased truck traffic.  
So, for example, if tolls are levied on trucks to address the risk externalities they generate, then 
such tolls would be similar for trucks travelling on Interstates 110 and 405, but considerably 
lower than for those travelling on State Route 17.  And Truck tolls on Interstate 710 would be 
lower than average if such tolls were levied only on routes with positive levels of external risk. 
 
 In summary, our results suggest that drayage routes may indeed be relatively dangerous 
in terms of average risk, but that several other highways might be more suitable targets for safety 
policies designed to reduce accident risk by altering truck flows.  In other words, it may not be 
efficient to exclusively target drayage routes, and the dray drivers travelling them, when 
formulating truck-related highway safety policies. 
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5. Concluding Remarks 
 
 
5.1 Summary of Analysis and Findings 
 
 We estimate three accident-risk measures — average risk, marginal risk, and external risk 
— to assess the relative danger of several California highways carrying varying concentrations 
of heavy commercial truck traffic. We do so by exploiting fixed-effects panel regression methods 
using a large panel of California highway traffic and accident data from January 2007 through 
April 2010.  We also develop a somewhat novel analytic model that enables us to calculate 
marginal and external risk using from our panel regression results.  Table 9 summarizes how 
each route in our study ranks according to our three risk measures. 
 
 

Table 9 
Summary of Route Rankings by Average, Marginal, and External Risk 

 
Route AR MR ER  Route AR MR ER  Route AR MR ER  Route AR MR ER 

I105-E 24 46 36  I805-N 28 60 76  SR17-S 79 7 9  SR57-N 26 - - 
I105-W 20 - -  I805-S 40 56 71  SR180-E 92 74 70  SR57-S 12 49 37 
I10-E 47 19 18  I80-E 44 38 34  SR180-W 91 - -  SR60-E 17 23 19 
I10-W 46 22 28  I80-W 51 41 42  SR1-N 110 81 53  SR60-W 19 27 22 
I110-N 3 30 11  I880-N 18 34 27  SR1-S 109 75 57  SR65-N 98 3 8 
I110-S 2 32 13  I880-S 23 35 32  SR22-E 7 53 69  SR65-S 106 79 66 
I15-N 76 37 43  I8-E 89 68 62  SR22-W 39 57 78  SR71-N 30 63 80 
I15-S 75 - -  I8-W 83 64 63  SR237-E 54 13 26  SR71-S 49 72 86 
I205-E 85 83 73  SR101-N 84 24 45  SR237-W 35 15 15  SR73-N 60 48 46 
I205-W 87 5 24  SR101-S 86 25 48  SR238-N 94 6 21  SR73-S 68 - - 
I210-E 27 51 49  SR113-N 99 11 5  SR238-S 104 88 79  SR78-E 100 78 60 
I210-W 31 50 47  SR113-S 113 4 17  SR23-N 101 82 74  SR78-W 105 87 59 
I215-N 15 52 52  SR118-E 52 - -  SR23-S 102 86 75  SR84-E 114 89 55 
I215-S 37 40 35  SR118-W 53 - -  SR24-E 57 33 31  SR84-W 111 - - 
I280-N 33 43 39  SR120-E 107 80 54  SR24-W 55 12 3  SR85-N 32 - - 
I280-S 34 - -  SR120-W 112 2 30  SR37-E 48 62 84  SR85-S 29 - - 
I405-N 13 26 14  SR134-E 14 58 81  SR37-W 70 67 82  SR87-N 1 16 1 
I405-S 22 18 10  SR134-W 10 39 29  SR41-N 95 77 58  SR87-S 4 - - 
I580-E 62 - -  SR14-N 65 61 72  SR41-S 93 69 56  SR91-E 16 17 12 
I580-W 69 - -  SR14-S 64 - -  SR4-E 82 66 68  SR91-W 25 20 16 
I5-N 72 29 41  SR152-E 97 85 65  SR4-W 88 65 64  SR92-E 41 73 85 
I5-S 78 21 40  SR152-W 96 8 33  SR51-N 5 - -  SR92-W 80 9 7 
I605-N 6 31 23  SR160-N 108 1 4  SR51-S 9 - -  SR94-E 90 84 83 
I605-S 8 28 20  SR160-S 103 - -  SR52-E 77 76 87  SR94-W 81 - - 
I680-N 50 44 44  SR163-N 45 - -  SR52-W 63 71 89  SR99-N 73 42 50 
I680-S 56 - -  SR163-S 38 70 88  SR55-N 42 59 77  SR99-S 74 45 51 
I710-N 11 47 38  SR170-N 67 - -  SR55-S 43 - -  US50-E 66 54 61 
I710-S 21 36 25  SR170-S 36 14 2  SR56-E 61 - -  US50-W 58 55 67 
I805-N 28 60 76  SR17-N 59 10 6  SR56-W 71 - -      
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 We pay particular attention to risk measures for the four routes that carry the heaviest 
concentrations of drayage traffic: Interstates 110 and 710 in both directions, which we refer to as 
"drayage routes" (indicated by boldface type in the above table).28  We do this to investigate a 
general notion that drayage traffic is inherently more hazardous than heavy commercial truck 
traffic in general, perhaps due to the intensely-competitive nature of drayage operations. 
 
 Our empirical findings are somewhat mixed.  All of the drayage routes exhibit an average 
risk well above the mean of the 114 routes considered in our study.  The northbound and 
southbound directions of Interstate 110, in particular, carry the second and third highest average 
risk among these routes.  In terms of marginal risk, however, the drayage routes rank from 30th 
to 47th — well behind several other urban routes.  The external risk rankings for the drayage 
routes range from 11th to 38th, demonstrating that inefficiently-high truck volumes, in terms of 
accident risk, are not unique to drayage routes. 
 
 In short, our findings suggest that drayage routes are relatively hazardous from the 
standpoint of average risk.  In terms of marginal and external risk, however, we find that several 
urban highways carrying smaller concentrations of drayage traffic may be more suitable targets 
for safety policies designed to alter the flow of heavy truck traffic. 
 
 
5.2 Caveats 
 
 Three key variables in our analysis are the truck volumes, car volumes, and the number 
of accidents on each route.  Car and truck volumes, however, are only available for the 
monitored portions of each route, whereas accident rates are reported for the entire length of each 
route.  We were thus forced to impute traffic volumes on each route in order to make them 
consistent with the accident rate data.  And in the process of validating out imputations we were 
forced to discard "unreliable" information for several routes. 
 
 Moreover, the PeMS data facility from which we collected our traffic and accident data is 
not capable of exactly matching accidents to routes in all cases.  That facility is also at the mercy 
of disabled traffic sensors and failed links with the CHP and TASAS reporting systems.  Hence, 
our estimates may reflect "noise" due to data measurement error, although we devoted 
considerable effort to culling anomalous observations from our database. 
 
 A more reliable means of collecting data for our analysis would be to request car and 
truck volumes directly from Caltrans, and accident data directly from their TASAS system, on a 
route-by-route basis.  Doing so for California's 508 or so urban routes, or even for the 114 routes 

                                                 
28 In Table 9, blank entries for marginal and external risk estimates indicate that those estimates were not 
statistically-significant at the 5% significance level.  
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in our sample, would have been prohibitively costly.  Instead we made every effort to construct a 
reliable database using the PeMS facility, which allowed us to exploit rich, cross-sectional 
information in a cost-effective manner. 
 
 
5.3 Suggestions for Further Research 
 
 Our analysis is related to a broader literature on the relationship between product safety, 
firm profitability and market structure.29  In the context of drayage operations, further research 
could examine possible changes in accident risk on the drayage routes after the implementation 
of the Clean Truck Program at the San Pedro Bay ports.  The truck-age and engine-retrofitting 
restrictions imposed by this program, and the attempted ban of independent owner operators at  
the port of Los Angeles, are likely to result in reduced competition among drayage operators.  
And economic theory predicts that reduced competition leads to greater firm profitability.  So a 
useful hypothesis would be whether or not this increased profitability has improved the safety of 
the highways most commonly traveled by drayage trucks.  This hypothesis could be tested using 
time-series data from these drayage routes, using analytic methods similar to those developed in 
our present study. 
 
 Further research could also focus on whether or not independent owner operators actually 
have an incentive to "cut corners" when it comes to safely maintaining their trucks, noting that 
maintenance is costly, but so are accidents.30  A safety "production function" approach, similar to 
that proposed by Friedlander and Spady (1980), could be employed to conduct the analysis.  
Doing so, however, would require data on truck-maintenance expenditures, drayage revenues 
and pay rates, drayage output (such as the number of containers hauled per month), and so forth 
— perhaps gathered using survey instruments. 

                                                 
29 In the context of freight movement by truck, see Monaco and Williams (2000), Belzer (2002), and Rodriguez et 
al. (2003). 
30 In a related study, Monaco (2007 – METRANS 06-02) examines the feasibility of subsidies in a truck-retrofitting 
context and finds that owner-operators would be willing to increase their share of maintenance investment if 
subsidized. 
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